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1. Introduction

Missing and mixed up observations often arise in experimental
work due to various reasons and methods of handling such situations
is available in literature only when they occur in analysis of variance
problems [1, 2, 3, 5]. In the present paper, we discuss the methods
of analysing data when missing and mixed up observations occur
in covariance analysis.

2. Missing observations in covariance analysis

In experiments designed to use covariance analysis, missing
observations may arise on (i) random variable (or study variable),-
(j7) concomitant variable, or {Hi) both random and concomitant
variables.

If some observations are missing on the random variable alone
then Yate's method or Bartlett's technique can be employed to handle
the situation. Yates' method of estimating the missing observations
cannot be applied when values on the concomitant variables are
missing. However, Bartlett's technique of defining more concomi
tant variables can be suitably u^^ilised to handle suitations at (ii)
and {Hi).

Let there be 5 concomitant variables Zj, Z2, .. ., Zs and let y be
the random variable. Let m + nhe the total experimental units and
data on the random variable and all concomitant variables be avail
able on the first n units while either y value or some of z^, Zg..., Zj
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values bemissing on the, remaining m plots. The technique consists
of defining m more pseudo concomitant variables which take zero
values on the units.with no missing observations and take values as
shown in Table 1 on the m units with missing observations :

TABLE 1 • •

Missing Pseudo concomitant variables Random
units ^5+1 ^S+2 . ^s+3 ^s+m variable y

1 h 0 . 0 ... 0 0 '

2 0 /C2 0 ... 0 0

3 0 0 /C3 0 0

m 0 0 0 ... km 0

ki, k^ are non zero real numbers

We now mathematically prove that the analysis based on
pseudo concomitant variables gives the same analysis as if the
existing observations are analysed.

Let
X,

be the (m+w) Xp design matrix of known

constants, where corresponds to the units with no missing

Zx
~observations, and let Z= be the («+w)X5 matrix corres

ponding to concomitant observations where Zj corresponds to units
with no missing observations. Let j be a 7zx1 column vector of the
observations on the random Variable. If the first n units are taken
into account, we have the model

£'(j')=ZiP+Zi Y, ..,(2:1)
where £ stands for mathematical.expectation, p is a px\ column
vector of unknown parameters and y is a sxl column vector of

regression coefiicients with the usual assumptions. The estimated p
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and Yare solutions of the normal equations

A

p - X,'y -

_z,% z/z,_ A
_ -

Y

and the residual sum of squares will be given by

J R^^=y'y-yX^y-iZ{y.

%1

...(23)

With the newly added pseudo concomitant variables, the
model becomes

E
L

Zi 0,

L ^2 K
Y

5

...(24)

where-fi:=diag (/q, k„,), Om, „ is an mxn null matrix and S is
mX 1 column vector of the additional regression coefficients. The
normal equations for the set up (2'4) are given by

X,'X^ + X '̂X^ Z/Zi+A-^'Za X^K

Z^X^+Z^X, . Z^K

- p* -

Y* = Z^'y

^ 8* Om.1 n_

, ...(2-5)

KX, KZ^

where P*, y* and S* are the estimates of the respective parameters
with m-\-s cocomitant variables.

Since K is non-singular, the third equation of (2'5) gives

^ ...(2-6)

Substituting the value! of 8* of (2'6) in the first and second
equations of (2'5), we observe that p* and y* satisfy the same normal

A A

equations as p and y satisfy. Thus the estimates of parameters and
regression coefficients reniain the same with the additional pseudo
concomitant variables as if the analysis was performed with the
existing observations. We can also see that similar results hold
under any null hypothesis and the analysis will remain as if the
affected plots are ignored in the analysis.

Since case (//) is a particular case of {Hi), similar results also
hold for case («).
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3. Mixed up observations in covariance analysis

Nair (1940)^ gave a method of analysing the mixed up data in
analysis of variance by using Bartlett's technique, Chakrabarti
(1963) in reply to a query on mixed lip observations established the
equivalence of Nair's technique and the least squares technique.

In the field experimentation due to various reasons the
, boundaries between the plots may disappear , and in such cases the
dataon individual plots may not be available but total yields or
total concomitant variable data will be available for a group ofplots.
Sometimes, investigators may commit certain errors resulting in
mixed up observations. In covariance analysis the mixed_up data
may arise with respect to (/) random variable or yield, (//) concomi'
tant variable, or (iii) both random and concomitant variables.
Situation (/) can be handled as in analysis of variance. We shall
give here the mathematics of case-(m) as if includes c^se (r'l) also.

Let the observational set up be

3^1

X,

Z,

Z, J
p

Y

...(3 1)

where y^, ja, -^1, Z^, Zg, (3 and y are of orders nXl, mxl, nxp,
mxp, nxs, mxs, pxl and s x 1 respectively. Let the m plots yield
corresponding to the vector j'a be mixed up giving 'the total J7 and
let each of the s concomitant variables be mixed up on these m plots
leaving totals U^, U, respectively. By defining (m-1) more,
pseudo concomitant variables which take the value 0 for unafiFected -
plots and take the values as indicated in Table 2 for the. affected
plots, we will show that we get the correct analysis of covariance.

• - TABLE 2 .

Affected
plots

Original concomitant
' variables

Zl ^2 - Zs

Additional Pseudo
variables

2s+l ^s+a

Yield

y

1. Uilm Uglm ... U^lm 1 1 ... 1 Ulm
2. VJm^ U^lm ... Usim l—m 1 . ... 1 Ulm
3. Uilm Vzjm ... Vslm 1 l-m... 1. U/m

m . Uxim Uzlin ... UJm 1 1. ... l-m Ulm

.^1
:lri
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The least squares set up for meeting the present situation
will be

, 1

V"
m Ja

J
1

^/m ^11 m^2 -fil) m^2

•P

Y
, ...(3 2)

where „ denotes an mxn matrix with +1 everywhere, and
normal equations estimating p and y are given by

,n Zj

Z, Z/Z,+ i- Z/4„, , z,

•* A "

P

A

Y

Z,>,+ — Z.T™, „
...(3-3)

With the added pseudo concomitant variables, the set up
will be

yi o'
E

u =

m 1 ^2 M

P

Y

L s „

where C/,,..., £/j, •^1; m-l
_ Em-l, m-l

...(3-4)

and 5is awX1 column vector of regression coeflScients correspond
ing to the newly added concomitant variables.

The normal equations for model (3-4) are

Z/Zi+Zg'Za Zi'Zi+-^ 1a' X '̂M

— m^2 Zi'Z^+~ a a' Os,

ikf'Z, O m—1> s M'M

p*

Y*

5*
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Z,'yr +̂ a

m "' ^

...(3-5)

From the third equation of (3-5) we have

M'(^ -(S-G)
Substituting the value of 5* in first and second equations of

(3'5) aind simplifying using

M-= ( 7„--^ E„„ ), ..,(3-7)

we can easily verify that P* and y* satisfy the same normal equations
A A

(3 3) as satisfied by p and y- Siriiilar results can be verified under
any null hypothesis and thus the least square analysis and the present
analysis with pseudo concomitant variables remains the same.
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